11. Let $\mathrm{AB}=2 \mathrm{r} . \therefore$ Area of Semi circle $=\frac{\left(\pi r^{2}\right)}{2}$ and Area of Triangle $=\left(\frac{1}{2}\right) \times A B \times O C=\left(\frac{1}{2}\right) \times 2 r x r=\left(\frac{1}{2}\right) \times 2 r^{2}$ Probability of the point comes inside the triangle=Area of the triangle/Area of the semi circle $=\frac{\left(\frac{1}{2} \times 2 r^{2}\right)}{\left(\frac{\left(\pi r^{2}\right)}{2}\right)}=\frac{\left(2 r^{2}\right)}{\left(\pi r^{2}\right)}=\frac{2}{\pi}=0.64 \quad$ OR

Probability of getting white bail from firse urn $=\frac{7}{12}$ Probability of getting White ball from second Urn= $\frac{8}{14}$ Probability of getting atleast one white ball from both urns $=\frac{7}{12} \times \frac{8}{14}=\frac{1}{3}$
12. \qquad
B \qquad 2 \qquad C

Given that $A B: A C=1: 3 \quad .^{\prime} . B C=2$ or $A B: B C=1: 2$
.'. B divides the line between the points $A(-2,1)$ and $C(10,10)$ in the ratio 1:2
b) Coordinates of B are $\left(\frac{1 \times 10+2 x-2}{2+1}, \frac{1 \times 10+2 \times 1}{2+1}\right)=\left(\frac{(10-4)}{3}, \frac{(10+2)}{3}\right)=(2,4)$
a) Length of $A B=\sqrt{\left(4^{2}+3^{2}\right)}=5$
slope of line $A B=\frac{3}{4}$ If (x, Y) is a point on the line, slope of line joining (x, y) and $(2,4)$ is $=\frac{(y-4)}{(x-2)}=\frac{3}{4} .^{\prime} .4 y-16=3 x-6$
c) Equation of line $A B$ is $3 x-4 y+10=0$
13.
a) $B C=B D+D C=10+7=17 \mathrm{cms}$ (Since Length of tangents are equal)
$A B+A C+B C=70 . A^{\prime} . A B+A C+17=70$
$A B+A C=70-17=53 .{ }^{\prime} . A C=53-A B---(1)$
$A P=A Q .{ }^{\prime} . A B+B P=A C+Q C \quad . \quad A B+10=A C+Q C$
$A B+10=53-A B+Q C$ by using (1)
$2 A B=43+7=50 .{ }^{\prime} . A B=25 \mathrm{cms} A C=53-A B=53-25=28 \mathrm{cms}$

14. Let Speed of the Motorcycle from home to city be $x \mathrm{~km} / \mathrm{hr}$

$$
\frac{5}{x}+\frac{5}{(x+20)}=\frac{10}{48} \quad .^{\prime} . \quad 5\left(\frac{1}{x}+\frac{1}{(x+20)}\right)=\frac{10}{48} \quad .^{\prime} . \quad \frac{1}{x}+\frac{1}{(x+20)}=\frac{10}{(48 x 5)}=\frac{1}{24}
$$

$.^{\prime} . \quad x+20+x=\left(\frac{1}{24}\right) \times x(x+20) .^{\prime} .(2 x+20) x 24=x^{2}+20 x \quad . \quad . x^{2}+20 x-48 x-480=0$
$.^{\prime} . x^{2}-28 x-480=0 .^{\prime} \cdot x^{2}-28 x+196=480+196=676 .{ }^{\prime} .(x-14)^{2}=676 . .^{\prime} .(x-14)= \pm 26$

